<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          Global EditionASIA 中文雙語Fran?ais
          China
          Home / China / Innovation

          Mystery of sticky lunar soil solved

          Study finds space weathering makes far side regolith clumpy and cohesive

          By LI MENGHAN | CHINA DAILY | Updated: 2025-11-25 07:06
          Share
          Share - WeChat
          Researcher Qi Shengwen studies lunar soil samples collected by the Chang'e 6 robotic probe at the Chinese Academy of Sciences' Institute of Geology and Geophysics. QIAO SIJIA/FOR CHINA DAILY

          When China's Chang'e 6 robotic probe returned with lunar samples from the far side of the moon last year, scientists noticed something peculiar — the lunar soil, or regolith, was unexpectedly sticky.

          While soil collected from the near side of the moon by the Chang'e 5 probe was loose and sandy, the regolith samples from the far side — the face of the moon that never turns toward Earth — were clumpy and cohesive. That mystery has now been solved.

          In a study published on Monday in the journal Nature Astronomy, a team of researchers from the Chinese Academy of Sciences attributed the stickiness of lunar regolith from the far side to the geometry of the particles, which are extremely small, very sharp and unusually jagged.

          Space weathering, or exposure to harsh weather for millions of years, can not only pulverize soil particles, but also melt and fuse them into irregular-shaped globs. As the lunar far side is more weathered, the regolith is more cohesive — a finding that could influence how future lunar bases are built.

          The research was launched after Hu Hao, chief designer of the Chang'e 6 mission, noted in June 2024 that the lunar regolith collected from the South Pole-Aitken Basin on the far side appeared "slightly more cohesive and somewhat clumpier" than the soil samples brought back to Earth from the near side of the moon.

          A team led by Qi Shengwen, a professor at the CAS' Institute of Geology and Geophysics, subjected the samples from the lunar far side to a series of tests. They performed an "angle of repose" test, which essentially involves letting the soil pass through a funnel to see how steep a pile it could form without sliding.

          The results showed that lunar regolith from the far side forms a much steeper slope, behaving more like damp garden soil than dry beach sand.

          Researchers first looked for the obvious culprits — moisture or magnetism — for such cohesive behavior, but found neither. The lunar soil contained no clay and only trace amounts of magnetic minerals, so they postulated that the answer could lie in the geometry of the particles.

          Using high-resolution computed tomography scans to analyze more than 290,000 individual grains, the team found that particles from the far side are extremely small — averaging 48.4 microns in diameter — as well as unusually jagged and very sharp.

          Qi said these properties create an environment conducive to cohesion. The rough surface increases friction, interlocking the particles, and because the particles are so small, they are subject to weak intermolecular bonds, such as the van der Waals forces, he noted.

          "This is unusual. Typically, finer particles are more spherical. Yet, the Chang'e 6 soil samples, despite being fine, have more complex shapes," Qi said.

          Researchers attributed these unique soil properties to the violent history of the lunar far side, which was subject to intense space weathering, including constant bombardment by micrometeoroids and lashing by solar winds.

          The regolith on the far side is also rich in feldspar, a mineral that tends to fracture into jagged pieces rather than wearing down smoothly.

          Understanding the texture of lunar soil is more than pure scientific curiosity; it is a critical engineering challenge for future exploration.

          Sticky, abrasive soil can clog machinery, coat solar panels and jam the joints of space suits. Knowing these properties helps engineers design better rovers and landing pads.

          "The research results will provide a key theoretical basis for the future construction of lunar bases and the development of lunar resources," Qi said, adding that whether such cohesive soil can be used as construction material is a matter of further studies.

          The new findings come as China accelerates its space program.

          The country has announced its plans to land astronauts on the moon before 2030. To achieve that goal, engineers are developing the Long March 10 carrier rocket, a new generation of manned spacecraft and a "mobile lunar lab "capable of long-term unmanned operations and short-term human stays.

          Top
          BACK TO THE TOP
          English
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
           
          主站蜘蛛池模板: 久青草视频在线观看免费| 亚洲精品国产综合久久一线| AV最新高清无码专区| 成人无码视频| 高清美女视频一区二区三区| 性色av无码久久一区二区三区| 国产成人高清亚洲综合| 18禁超污无遮挡无码网址| 午夜精品一区二区三区的区别| 熟女一区二区中文字幕| 亚洲一级成人影院在线观看| 999国产精品一区二区| 国产不卡一区在线视频| 亚洲国产日韩欧美一区二区三区| 在线A毛片免费视频观看| 日日碰狠狠添天天爽| 亚洲天堂av日韩精品| 激情中文丁香激情综合| 亚洲一区二区三区在线观看精品中文| 亚洲AV无码片一区二区三区| 亚洲av噜噜一区二区| 久久国产免费观看精品3| 国产精品午夜福利免费看| 欧美高清精品一区二区| 午夜欧美日韩在线视频播放| 国产普通话刺激视频在线播放| 亚洲国产精品一区第二页| 亚洲av永久无码精品网站| 国产乱子伦视频在线播放| 中文激情一区二区三区四区| 99久久国产精品无码| 人妻中文字幕av资源站| 熟妇无码熟妇毛片| 久久九九久精品国产免费直播 | 公粗挺进了我的密道在线播放| 亚洲色成人一区二区三区人人澡人人妻人人爽人人蜜桃麻豆 | 国产色悠悠综合在线观看| 黄色三级网站免费| 亚洲综合视频一区二区三区| 亚洲人成电影网站色mp4| 自拍视频亚洲精品在线|