<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          Global EditionASIA 中文雙語Fran?ais
          China
          Home / China / Society

          Xi'an City Wall gets health checkup after heavy rains

          By Qin Feng in Xi'an and Wang Songsong | China Daily | Updated: 2025-11-07 09:14
          Share
          Share - WeChat

          Cultural relics protection authorities in Xi'an, Shaanxi province, are implementing comprehensive measures to protect the iconic Xi'an City Wall from heavy rains linked to climate change, particularly over the past few months.

          Since September, the province has experienced three prolonged rainy periods, with 87 monitoring stations recording more than 20 days of rainfall. The stations collectively recorded an average precipitation of 314 millimeters, 1.6 times higher than the normal level for this period. This marks the second-highest precipitation since 1961, trailing only 2021.

          The risks posed by heavy rainfall became clear five years ago. In August 2020, a 20-meter section of the protective masonry on the southern part of the Qin Prince Palace wall in Xi'an collapsed due to heavy rainfall. It was confirmed that only the recently restored outer layer was damaged, while the original Ming Dynasty (1368-1644) rammed-earth structure remained intact.

          "The primary cause of damage to the wall over the years has been water," said Gao Heng, head of the cultural heritage protection department of the Xi'an City Wall Management Committee.

          According to Gao, increased moisture leads to two main types of damage: surface deterioration and structural issues. Surface deterioration primarily involves the growth of moss and lichen in the brick joints due to a more humid microclimate. While this does not threaten the wall's overall structural integrity, the growth requires manual removal.

          A more significant concern is water seeping into cracks and reaching the wall's core, which is made of rammed earth. Once water infiltrates the rammed-earth structure, the soil's bearing capacity decreases, potentially leading to localized settlement or collapse.

          "This, in turn, triggers localized subsidence and collapse. These cracks and depressions then channel rainwater, accelerating infiltration and creating a self-reinforcing vicious cycle that continuously threatens the structural safety of the wall," Gao said.

          To address these problems, the committee has adopted a differentiated maintenance approach. Routine maintenance includes promptly sealing cracks to block water seepage pathways and addressing settlement by re-leveling surface bricks and replacing damaged ones in affected areas. Engineering measures are required when severe cracks or significant settlement appear. These involve more thorough solutions such as re-compacting loose, unconsolidated soil on the wall's summit to enhance its bearing capacity and prevent water seepage.

          A key drainage project, approved by the National Cultural Heritage Administration, is being implemented around the wall's foundation to divert rainwater.

          "Keeping water away from the wall's base is crucial to its long-term stability," Gao said.

          The committee has also introduced a "wall chief" system, assigning individuals to oversee specific sections for routine monitoring and the early reporting of issues.

          Technology plays a vital role in these efforts. Since 2018, a "digital cabin" system that integrates more than 3,000 sensors has been deployed to monitor settlement, crack displacement and other vital signs. Drones are deployed once every three months for aerial inspections. A four-color warning system — red, orange, yellow and green — assesses risks based on the severity and rate of change of any damage, allowing for targeted responses.

          In 2023, a full "CT health scan" of the 13.74-kilometer-long wall was conducted using ground-penetrating radar and high-resolution surface wave technology. It revealed more than 1,300 historical cavities and 800 areas of less compact soil within the wall.

          "These are not immediate dangers, but they are hidden risks we must monitor," Gao said.

          Collaboration is another cornerstone of the preservation work. Gao said the local meteorological bureau provides specialized weather forecasts and early warnings, while universities such as Northwest University and a multidisciplinary committee of experts offer academic and technical support.

          Top
          BACK TO THE TOP
          English
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
           
          主站蜘蛛池模板: 国产系列高清精品第一页| 国产午夜精品理论大片| 女性高爱潮视频| 全免费A级毛片免费看无码| 精品无码人妻一区二区三区| 国产成人精品中文字幕| 精品亚洲成av人在线观看| 亚洲一区二区在线av| 欧美人人妻人人澡人人尤物| 97国产成人无码精品久久久| 好爽好紧好大的免费视频| 韩国无码AV片在线观看网站| 国产精品免费中文字幕| 日韩 一区二区在线观看| 亚洲国产日韩伦中文字幕| 亚洲日韩一区二区一无码 | 國产AV天堂| 国产情侣激情在线对白| 果冻传媒董小宛视频| 色偷偷www.8888在线观看| 少妇高潮水多太爽了动态图| www.狠狠| 四虎永久精品免费视频| 日韩 一区二区在线观看| 在线高清免费不卡全码| 国产精品久久久亚洲| 久青草视频在线观看免费| 国产理论精品| 亚洲熟妇av综合一区二区| 色综合热无码热国产| 亚洲日本va午夜中文字幕久久| 日本亚洲一区二区精品| 亚洲大尺度无码无码专线| 国产精品久久久天天影视香蕉| 久久久精品无码一二三区| 国产高清一区二区不卡| 亚洲天堂一区二区成人在线| 国产麻豆成人传媒免费观看| 国内自拍视频一区二区三区| 亚洲国产精品日韩在线| 久久无码高潮喷水|