<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          USEUROPEAFRICAASIA 中文雙語Fran?ais
          Opinion
          Home / Opinion / Op-Ed Contributors

          Tackling the challenges of sponge cities

          By Asit K. Biswas/Kris Hartley | China Daily | Updated: 2017-09-26 07:34

          Tackling the challenges of sponge cities

          LI MIN/CHINA DAILY

          From the staggering population migration to the multi-lane traffic jams, China's rapid urbanization has captured global attention. But much of what threatens the sustainability of China's urbanization is not above ground but under it.

          In particular, the over-extraction of groundwater, the degradation of water bodies and wetlands, and urban flooding are forcing Chinese cities to address a complex puzzle: The surface development in cities leaves little opportunity for natural systems to mitigate rainwater runoff and replenish groundwater. The result is a vicious circle of investment in rainwater infrastructure and new land development that exacerbates the runoff problem.

          China's sponge city initiative aims to arrest this cycle through permeable surfaces and "green infrastructure". But the initiative faces three challenges: already polluted groundwater, a focus on spot-level solutions, and the constrained fiscal capacity of local governments. The sponge city initiative, a joint effort of three ministries-h(huán)ousing and rural-urban development, finance, and water resources-h(huán)as ambitious goals: by 2020, 80 percent of urban areas should absorb and reuse at least 70 percent of rainwater.

          First mentioned by President Xi Jinping in 2013 and officially launched in 2015 in 16 cities, the initiative approaches urban water sustainability from two angles: it reduces the intensity of rainwater runoff and distributes absorption more evenly; and the resulting groundwater replenishment increases the supply of reusable water feeding into existing systems (channeled runoff is often treated then discharged, removing it from usage circulation).

          A series of concurrent legislative directives accompanies China's initiative, addressing a range of issues, including wastewater infrastructure and urban waterway pollution remediation.

          The pilot case of Lingang, a new town project on the coast near Pudong, Shanghai, illustrates typical sponge city measures: rooftops covered with plants, scenic pools and wetlands for rainwater storage, and permeable pavement that stores runoff water and allows evaporation for temperature moderation. Runoff water is also stored in a large underground reservoir and purified through natural vegetation. With ambitions to be China's largest sponge city project, the Lingang local government has invested $119 million in retrofits and innovations that are a model for the majority of Chinese cities lacking modern water infrastructure.

          Other cities have made notable efforts as well. Sponge city projects in Xiamen and Wuhan have performed effectively in heavy rainstorms. Such cases reflect the progress of the sponge city initiative.

          But despite these gains, China faces three challenges. First, groundwater pollution is reaching alarming levels, with more than half of China's shallow and deep groundwater deemed non-potable.

          Rainwater-responsible for more than 50 percent of the pollution flowing into natural bodies of water-h(huán)as also become an increasingly visible public concern in China.

          The second challenge is related to the first. Enabling the sponge city initiative to reach its full potential involves a whole-of-system approach to managing pollution. Many projects are spot-level solutions at particular sites. Given the broad geographic spread of watersheds, sponge city initiatives will need to be significantly scaled up and an optimum infrastructure coverage share determined.

          The recent Water Pollution Prevention and Control Action Plan has already been used to shut down 50,000 polluting companies, but concerns persist about weak and selective enforcement by local authorities focused on "easier aspects of the legislation". Thus, the problem is not only technical but institutional: China must plug regulatory loopholes and enforce compliance locally.

          Finally, funding is a persistent constraint. To date, more than $12 billion has been spent on sponge city projects. Systems required for such projects can be expensive. The central government funds 15 percent to 20 percent of the costs, with the remainder split between local governments and the private sector.

          Unfortunately, the initiative coincides with a burgeoning local government debt crisis. Chinese cities may soon find borrowing costs even higher and avenues for deleveraging narrower. As such, sponge city initiatives will compete for the scarcer resources against infrastructure seen as more important amid population growth.

          The private sector is another source of gap funding, and public-private partnerships may be a solution. In early 2017, French-based utility company Suez Environment was awarded a $4.7 million contract to help an eco-district in Chongqing improve its wastewater system through integration of digital monitoring technologies.

          However, investment in sponge city initiatives is still difficult, with only tepid interest from domestic investors. The government should explore supply-side vehicles for incentivizing investment, including tax credits, deductions, and time-or performance-based exemptions.

          China has the opportunity to showcase how prudent planning and regulatory discipline can transform urban flood management and improve water quality. The government has acknowledged this growing challenge and now provides resources and guidance, while enterprising localities compete to fund innovative proposals with ambitious targets.

          To complement sponge city investment, the central government should now take additional measures to improve groundwater quality, adopt a whole-of-system approach for pollution control and incentivize private investment.

          Asit K. Biswas is a distinguished visiting professor at the Lee Kuan Yew School of Public Policy, National University of Singapore and Kris Hartley is a research affiliate at the Center for New Structural Economics at Peking University and a nonresident fellow at the Chicago Council on Global Affairs.

          Most Viewed in 24 Hours
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
          主站蜘蛛池模板: 欧美日韩高清在线观看| 国产麻豆放荡av激情演绎| 99久久无码私人网站| 人妻另类 专区 欧美 制服| 国产欧美在线手机视频| 亚洲av综合色区无码专区| 国产内射XXXXX在线| 香蕉EEWW99国产精选免费| 国产精品一区二区久久毛片| 2020年最新国产精品正在播放 | 久久久久青草线蕉亚洲| 国产嫩草精品网亚洲av| 久久不见久久见免费视频观看 | 青青草原网站在线观看| 亚洲有无码中文网| 在线 国产 欧美 专区| 国产综合精品日本亚洲777| 国产中文字幕精品在线| 久久99热全是成人精品亚洲欧美精品 | 色综合一本到久久亚洲91| 国产精品入口麻豆| 四虎永久在线精品免费看| 亚洲精品天堂成人片AV在线播放| 真实国产老熟女无套中出| 欧美亚洲高清日韩成人| 亚洲人成精品久久久久| 人妻少妇精品久久| 思思久久96热在精品不卡| 六十路老熟妇乱子伦视频| 一色桃子中出欲求不满人妻| 久热综合在线亚洲精品| 丰满大爆乳波霸奶| 精品中文人妻中文字幕| 18禁成年免费无码国产| 中文字幕日韩有码国产| 欧美韩国精品另类综合| 小污女小欲女导航| 国产成人自拍小视频在线| 日本高清一区免费中文视频| 亚洲人成人无码www| 成人av天堂男人资源站|